
Gitlab-CE-Server unter Linux installieren und betreiben

Vorwort zur Anleitung:

Diese Anleitung hat einen hohen Schwierigkeitsgrad. Installation von Linux und Kenntnisse in
der Befehlszeile sind vorausgesetzt.

Was ist ein Gitlab-CE-Server?

Ein GitLab CE Server ist ein Server, auf dem die Community Edition (CE) der GitLab-
Software installiert und betrieben wird. GitLab ist eine DevOps-Plattform, die Entwicklern hilft,
Code zu verwalten und zu entwickeln.

GitLab CE (Community Edition)

• Open Source: Die Community Edition ist die kostenlose, Open-Source-Version von
GitLab. Sie bietet Funktionen für die Versionskontrolle und DevOps-Prozesse..

• Funktionsumfang: GitLab CE umfasst Funktionen wie:
• Git-Repository-Management
• Code-Reviews
• CI/CD-Pipelines (mit begrenztem Funktionsumfang im Vergleich zur

kostenpflichtigen Version)
• Issue-Tracking
• Merge-Requests
• Wiki und Snippets

Einsatzmöglichkeiten eines GitLab CE Servers

• Entwicklerteams können ihre Projekte und Code-Repositorys auf diesem Server
verwalten.

• CI/CD-Prozesse für automatisierte Tests und Deployments werden auf dem GitLab CE
Server eingerichtet.

• Private Git-Instanzen: Unternehmen oder Einzelpersonen, die GitLab für ihre eigene
Infrastruktur verwenden möchten, ohne eine kommerzielle Lizenz (Enterprise Edition) zu
benötigen, können GitLab CE auf einem eigenen Server betreiben.

Zusammengefasst ist ein GitLab CE Server einfach eine selbstgehostete Installation von GitLab
in der Community Edition. Er kann auf einer Vielzahl von Betriebssystemen installiert werden
und ermöglicht es Teams, GitLab mit den grundlegenden Funktionen zu nutzen.

Vorbereitungen / Anforderungen:

Anforderungen

• Schwierigkeitsgrad-Installation: Hoch
• Schwierigkeitsgrad-Anwendung: Hoch
• Erforderliche Kenntnisse: Linux-Befehlszeile

Systemvoraussetzungen:
• Basis: Debian
• Betriebssystem: Ubuntu Server 22.04 (Headless)
• Festplattenspeicher: Mindestens 17 GB
• CPU: Mindestens 2 CPU
• RAM: Mindestens 5 GB
• Internetverbindung: Verfügbar

Die Systemanforderungen wurden
in einer virtualisierten Umgebung
getestet.

Tipp:

Wenn du mit Virtualisierung, z.B.
ProxMox, vertraut bist, kannst du
deine eigenen Server effizient und
stromsparend betreiben!

Getestet auf:

Ubuntu-Server 22.04
Ubuntu-Server 24.10

Installationsablauf:

1. Durchführung von System-Upgrade
2. Statische IP-Adresse festlegen und
anwenden
3. (Optional) Hostnamen festlegen
4. Installation und Einstellungen
5. Systembedienung
6. Resümee
7. GitLab-User anlegen
8. GitLab-Projekte anlegen
9. GitLab-Projekt klonen (Push&Pull)
10. Resümee
11. Schlussbemerkung

Optionale Schritte können weggelassen
werden, da sie lediglich unterstützende
Funktionen bieten, wie zum Beispiel die
Zusammenfassung von Servern in einem
Rechenzentrum.

Für den Betrieb in einem Rechenzentrum
sollten die optionalen Abläufe jedoch aus
Gründen des beruflichen Stolzes in
Betracht gezogen werden.

1. Durchführung von System-Upgrade

Vor jeder Installation ist ein System-Update erforderlich:

$> ssh DEINUSER@192.168.1.X Stelle eine SSH-Verbindung zum Server her, um Remote-
Operationen durchzuführen.

$> sudo apt update Aktualisiere die Paketquellen, um sicherzustellen, dass du
die neuesten Versionen der Pakete erhältst

$> sudo apt upgrade -y
Starte das System-Upgrade und verwende dabei die
Option --yes-to-all, um alle Bestätigungsabfragen
automatisch zu beantworten.

$> sudo apt autoclean Entferne Pakete, die nicht mehr benötigt werden, um
Speicherplatz zu sparen und das System zu optimieren.

$> sudo apt autoremove Bereinige das System von überflüssigen Abhängigkeiten,
die nach Paket-Deinstallationen übrig geblieben sind.

2. Statische IP-Adresse festlegen und anwenden

Ein Gitlab-Server benötigt zwingend eine statische IP-Adresse, weil Client-System ausfallen,
wenn sich diese Adresse ändert.

Es besteht die Möglichkeit, sich selbst vom Server auszuschließen, wenn die IP-Adresse nicht
korrekt konfiguriert ist.

$> ip addr
Verwende den Befehl ip addr, um alle
Netzwerk-Adapter und deren Namen
anzuzeigen.

$> sudo su Stelle sicher, dass du über Root-Rechte
verfügst, um Änderungen vorzunehmen.

$> cd /etc/netplan
Gehe in das Verzeichnis, in dem sich die
Netzwerk-Konfigurationsdateien
befinden.

$> ls Zeige mit dem Befehl ls alle relevanten
YAML-Dateien im Verzeichnis an.

$> for i in $(ls); do mv $i $i.bak; done
Sichere alle bestehenden
Konfigurationsdateien, bevor du
Änderungen vornimmst.

$> touch /etc/netplan/01_static_ip.yaml Erstelle eine neue Konfigurationsdatei

$> nano /etc/netplan/01_static_ip.yaml Öffne die Datei mit einem Texteditor

Beispiel-Konfiguration von Linux-Schweiz.ch
network:
 version: 2
 renderer: networkd
 ethernets:
 ens18: #Edit this line according to your network
interface name.
 dhcp4: no
 addresses:
 - 192.168.1.150/24
 gateway4: 192.168.1.1
 nameservers:
 addresses:
 - 8.8.8.8
 - 8.8.4.4

(Copy-Paste)

Ersetze ens18 durch den Namen deines
Netzwerk-Adapters (siehe Ausgabe von
ip addr).

Ändere die IP-Adresse und die
Netzmaske nach Bedarf.

Passen die DNS-Adressen an, falls
erforderlich.

Überprüfe und passe ggf. die Routen
(Gateway) an.

Speichern und Verlassen
• Speichern der Datei: Ctrl + O
• Editor verlassen: Ctrl + X

$> netplan generate && netplan apply Wende die neuen Netzwerkeinstellungen
an

 --- Verbindungsunterbruch – IP wird neu gesetzt

Der Server wechselt nun zu einer neuen IP-Adresse, was dazu führt, dass deine
aktuelle SSH-Sitzung unterbrochen wird.

3. (Optional) Hostnamen festlegen

Durch das Ändern des Hostnamens der Server-Station vergibst du einen eindeutigen Namen für
das System.

In unserem Fall könnte der Hostname beispielsweise „S5-Gitlab-Server“ lauten.

Die Hosts-Datei wird verwendet, um auf Server-Ebene IP-Adressen Namen zuzuordnen, die
intern genutzt werden. Wenn du den Hostnamen änderst, muss auch der entsprechende
Eintrag in der Hosts-Datei aktualisiert werden. Bei produktiven Systemen sollte diese
Kleinigkeit unbedingt beachtet werden, da sie ein Zeichen von Berufsethos und Professionalität
ist. Für Tests und Experimente ist dies jedoch nicht zwingend erforderlich.

Der neue Hostname muss zwingen der gleiche sein wie auch im Hosts-Files.

$> ssh DEINUSER@192.168.1.X Stelle eine SSH-Verbindung zum
Server über die neue IP-Adresse her.

$> sudo hostnamectl set-hostname DEINHOSTNAME Setze einen neuen Hostnamen.

$> sudo nano /etc/hosts
Bearbeite die Datei /etc/hosts oder
die entsprechende Datei, in der der
Hostname definiert ist.

127.0.0.1 localhost
127.0.1.1 DEINHOSTNAME

The following lines are desirable for IPv6 capable
hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

Ändere ausschließlich den markierten
Bereich, der den Hostnamen enthält.
Achte darauf, dass du keine anderen
Einträge unbeabsichtigt veränderst.

Speichern und Verlassen
• Speichern der Datei: Ctrl + O
• Editor verlassen: Ctrl + X

$> sudo reboot Starte den Server neu, damit die
Änderungen wirksam werden.

4. Installation und Einstellungen

GitLab-CE ist keine Anwendung aus dem Repository von Ubuntu-Linux. Falls die Installation
fehlschlägt muss die Installations-URL angepasst werden. Universe und Multiverse-Quellen
müssen im Sources-File aktiviert sein. Mehr unter:

https://packages.gitlab.com/gitlab/gitlab-ce/install

$> ssh DEINUSER@192.168.1.X Stelle eine SSH-Verbindung zum Server
über die neue IP-Adresse her.

$> sudo apt install curl -y
$> sudo apt install openssh-server -y
$> sudo apt install ca-certificates -y
$> sudo apt install tzdata -y
$> sudo apt install perl -y
$> sudo apt install postfix -y

Unterstützende Pakete installieren

$> cd
$> mkdir downloads && cd downloads

Optional – wechselt in ein anderes
Verzeichnis für den Download

$> curl -O
https://packages.gitlab.com/install/repositories/gitla
b/gitlab-ce/script.deb.sh

Installationshilfe für den GitLab-Server
herunterladen

https://packages.gitlab.com/gitlab/gitlab-ce/install

$> chmod +x script.deb.sh Bash-Script ausführbar machen

$> sudo bash script.deb.sh Bash-Script ausführen

$> sudo apt install gitlab-ce Installieren des Gitlab-Servers

Die GitLab-Installation ist eine umfangreiche Software mit großem Dateivolumen, die eher mit
einer eigenständigen Betriebssystem vergleichbar ist. Es wird in dieser Anleitung nur das
nötigste zur Lauffähigkeit erläutert.

$> sudo nano /etc/gitlab/gitlab.rb Einstellungen bearbeiten, externe URL
ändern – verwende deine IP-Adresse

Erstellen einer lokalen Domain oder einer Weltweiten Domain auf deine IP-Adresse.
In der Konfiguration kann auch mit deiner IP verwendet werden, jedoch muss sie zwingend im
Format http://DEINE-IP sein.

…
external_url 'http://192.168.1.151'
...

$> sudo gitlab-ctl reconfigure Neue Einstellung laden

$> sudo cat /etc/gitlab/initial_root_password Initial-Passwort anzeigen

$> sudo gitlab-rake "gitlab:password:reset[root]" Setzen eines neuen Admin-Passworts

Das Weblogin wird den Benutzernamen root und dein gewähltes Passwort verlangen.
Wähle ein starkes Passwort

$> sudo reboot Server-Neustart (Optional)

Die Basis-Installation ist nun installiert und kann über das Weblogin, welches deine URL oder IP-
Adresse sein wird, erreicht werden. Eine Menge an Einstellungen werden dich im Web-Gui
erwarten.

Hinweise zur Installation

GitLab ist eine leistungsintensive Anwendung, die sich von klassischen Linux-Anwendungen
unterscheidet. Viele gängige Verwaltungsbefehle werden hier durch ein eigenes Programm,
gitlab-ctl, gesteuert.

Daher sollte man vorsichtig sein und nicht willkürlich am Datenstamm herumbasteln. Die Daten
und Projekte, die in diesem System gespeichert sind, können nicht einfach kopiert und
wiederhergestellt werden. Aus Gründen der Einfachheit empfiehlt es sich daher, immer den
gesamten Server zu sichern.

Erfahrungen zeigen, dass es sinnvoller ist, den gesamten Server neu zu starten, anstatt nur die
Anwendung lokal zu stoppen und neu zu starten.

http://DEINE-IP/

5. Systembedienung

$> sudo gitlab-ctl restart Startet Gitlab-CE, um die Zeit-
Synchronisation zu aktivieren.

$> sudo gitlab-ctl stop Stoppt Gitlab-CE, wenn du ihn
vorübergehend deaktivieren möchtest.

$> sudo gitlab-ctl status Zeigt den Status aller GitLab-Dienste

$> sudo nano /etc/gitlab/gitlab.rb Bearbeitet die Gitlab-Konfigurationsdatei.

$> gitlab-ctl --help Zeigt die vielzahl an Steuerungsoptionen

$> sudo gitlab-ctl upgrade Führt ein Update aus

$> sudo apt install nmap -y
$> nmap localhost

Listet alle offenen Ports auf, um
sicherzustellen, dass der GitLab-Dienst
ordnungsgemäß kommunizieren kann.

6. Resümee

Der Gitlab-Server ist nicht pflegeleicht und kein Leichtgewicht. Je nach Nutzungszweck ist nicht
nur das Installations-Wissen oder Wartungs-Wissen nötig. Im Betrieb sind die Anwender-
Kenntnisse und Features höher gewichtet.

7. GitLab-User anlegen

Lege auf dem Web-Gui einen neuen Gitlab-User an, der sich vom Root-Account unterscheidet.

Für das erste Login ist der Account «root» zu verwenden.

Wechsle auf die Admin-Seite wo du auf eine Nutzer-Übersicht gelangst.

Erstelle einen neuen GitLab-Benutzer:

Wähle passende Credentionals und siehe dir die möglichen Einstellungen genau an:

In unserem Fall existiert noch kein Mail-Server, richte für den Benutzer X also ein Passwort ein:

(Wenn ein Mail-Server definiert ist, erhält die Person ein Email mit einem Link. Das Passwort
wird dann von der betreffenden Person selber festgelegt.)

Auch hier - Sieh dir die möglichen Einstellungen genau an!

Logge dich mit dem neuen Benutzer ein:

8. GitLab-Projekte anlegen

Lege unter dem neuen User ein Projekt an.

Hinweis: ein Projekt kann auch über die Kommando-Zeile angelegt werden, jedoch ist es für
Einsteiger einfacher dies als erstes über das Web-Gui zu erledigen:

Immer schön easy bleiben... und ein leeres Projekt erstellen – man kann die Funktionalitäten
damit unverfälscht testen und erkunden:

Erstelle ein Projekt nach deinem Geschmack! Sieh dir die möglichen Einstellungen genau an.
Wir kratzen nur an der Oberfläche und haben den Server für professionellen Bedarf noch nicht
komplett eingerichtet. Wichtig: Vermeide Tippfehler und wähle die Projekt-Namen klug!

Dein Test-Projekt wurde erfolgreich erstellt. Hier findest du die Projekt-Übersicht:

Für weiter Schritte ist es hilfreich unter «Code» die http-Sektion des Projektes zu kopieren:

9. GitLab-Projekt klonen (Push&Pull)

$> ssh CLIENT1@192.168.1.X Stelle eine SSH-Verbindung zum Client
über eine IP-Adresse her.

$> sudo apt install git Installiere Git auf deinem Client

$> mkdir projekte Erstelle einen Ordner für deine Projekte

$> cd projekte Wechsle in das neue Verzeichnis

$> git clone http://DeineIP/User/PROJEKT.git Klone dein Git-Repository in das neue
Verzeichnis

$> touch neuedatei1 Erstelle eine neue Datei

Dein Projekt-Repository ist nun vom Server-Stand abweichend. Dein lokales Projekt hat jetzt
einen aktuelleren Status als der GitLab-Server.

$> git status Zeige den aktuellen Status an

$> git add . Füge alle neuen Dateien der Änderung
zu

$> git commit -m «neue-Datei» Kommentiere deine Änderung

$> git status Zeige den aktuellen Status an

$> git push Uploade «pushe» dein Änderung

$> git status Zeige den aktuellen Status an

GitLab-Projekt von einem anderen eingerichteten Client auf den neuesten
Stand bringen
(einfaches Pull–Beispiel wenn mehrere Benutzer das gleiche Projekt betreuen)

$> ssh CLIENT1@192.168.1.Y Stelle eine SSH-Verbindung zum Client
über eine IP-Adresse her.

$> cd projekte Wechsle in das Projekt-Verzeichnis

$> git pull Downloade «pull» dein Änderung vom
Server.

10. Resümee

Wer zum ersten Mal mit GitLab in der Kommandozeile arbeitet, muss einiges an Geduld und
Durchhaltevermögen mitbringen – vor allem, wenn man sich das Thema alleine erarbeiten
muss. Fehlerbehandlung und unterschiedliche Betriebsmodi wurden in diesem Zusammenhang
noch gar nicht angesprochen. Zwar gibt es viele Anleitungen im Internet, doch die
Herangehensweisen variieren oft stark. Dieses Thema könnte problemlos eine eigene Anleitung
füllen. Mein Tipp: Wenn du dich mit GitLab vertraut machst, geh es spielerisch an – etwa mit
einem Testprojekt. Experimentiere, mache Fehler und lerne daraus.

11. Schlussbemerkung

Die GitLab-Technologie wurde hier anhand eines einfachen Beispiels vorgestellt. Mit GitLab
können Projekte versioniert und geteilt werden – in diesem Fall anschaulich über die
Kommandozeile. Viele grafische Entwicklungsumgebungen nutzen ebenfalls GitLab. Dadurch
können mehrere Entwickler gleichzeitig an einem Projekt arbeiten und den Versionsstand
aktuell halten.

Allerdings erfordert dies eine koordinierte Zusammenarbeit. Mit dieser Technologie hat GitLab
nicht nur einen neuen Ansatz in der Softwareentwicklung etabliert, sondern auch eine neue
Ideologie des Entwicklungsprozesses geprägt. Die Entwicklung kann nun nicht nur dezentral
organisiert werden, sondern es ist auch möglich, in alle Richtungen zu arbeiten.

Entwickler können unabhängig an Projekten arbeiten oder diese mit anderen teilen –
unabhängig davon, ob nur ein einzelner Entwickler oder ein ganzes Team beteiligt ist oder ob
einfach nur Entwicklungen ausgetauscht werden.

Hier wurde lediglich eines der einfachsten Beispiele sowie die Installation demonstriert. Dabei
wurden Fehlerbehandlung und Versionskonflikte noch nicht berücksichtigt.

